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Hierarchical ensembles: random fractals, flow fractals and the 
renormalisation group 

J R Melrose 
Department of Chemistry, Royal Holloway and Bedford New College, Egham Hill, Egham, 
Surrey TW20 OEX, UK 

Received 4 July 1985, in final form 6 November 1985 

Abstract. Hierarchical ensembles possess exactly renormalisable partition functions. 
Examples studied in this work are iterative geometric constructions which at criticality 
give random self-similar fractals. The ensembles include novel non-self-similar construc- 
tions termed flow fractals here. The simple criticality of these ensembles is analysed and 
the self-similar fractals are found to be homogeneous. A multiple weight ensemble, the 
Ising snowflake, is introduced. The transfer matrix of fractals is defined via the renormalisa- 
tion group. A discussion and interpretation is given of the eigenvalues of the transfer 
matrix fractals for the k ing  snowflake. 

1. Introduction 

Naturally occurring fractals are members of a weighted ensemble of possible configur- 
ations or outcomes. Mandelbrot ( 1982) introduced random fractal constructions to 
aid the modelling of natural fractals. At the present time much work is being carried 
out on aggregation and percolation fractals generated by Monte Carlo techniques. 
However, explicit random constructions a' la Mandelbrot have not received much 
attention. When considering ensembles it is natural to introduce a partition or generat- 
ing function (Feller 1950). In this work partition functions are formed from a direct 
combination of the familiar iterative constructions with a simple renormalisation group 
(RG) scheme as introduced in Melrose (1985). Within this scheme the transfer matrices 
of fractals (Mandelbrot et a1 1985, Aharony et a1 1985) appear directly. At fixed points 
of the RG, self-similar constructions are found. In addition non-self-similar construc- 
tions (termed flow fractals here) are available by following renormalisation trajectories. 
By construction the ensembles considered below will be hierarchical, possessing a 
finite weight space RG. Section 2 gives the definition of a hierarchical ensemble and 
describes some one weight examples along with general rules of construction. Section 
3 discusses the notion of geometric realisation and the choice of free coefficients in 
the examples. Section 4 discusses the critical behaviour and higher moments of the 
examples. Section 5 introduces a multiple weight example, the Ising snowflake. Section 
6 defines the transfer matrices of fractals via familiar RG algebra and § 7 discusses the 
eigenvalues and eigenvectors of these matrices on the snowflake with particular atten- 
tion paid to their geometric interpretation. Section 8 points out that hierarchical 
ensembles which are subsets of graphs of known Hamiltonian and geometric models 
can easily be found. Section 10 draws conclusions and presents the future outlook. 

0305-4470/86/122395 + 13%02.50 0 1986 The Institute of Physics 2395 



2396 J R Melrose 

2. Hierarchical ensembles: one weight examples 

Below, configurations are generated by an iterative decoration. Let Zn(P) be the 
partition function for the ensemble of all configurations at the nth iteration. Then the 
ensemble is hierarchical if Zn( P) obeys the recursion 

Zn(P) =Z,-,(R(P))K(T) (1) 
where P is some finite set of q weights, R(P) is a renormalisation recursion relation 
and q and K (  P) are independent of n. (The definition is a direct generalisation of the 
definition of hierarchical lattices (Griffiths and Kaufman 1982, 1984 and references 
therein) from lattices which naturally support hierarchical ensembles to hierarchical 
ensembles themselves.) The realisations in Euclidean space discussed below will all 
have K (  7) = 1; the author has not found Euclidean realisations with K (  F) non-unity. 
The simplest class has a single weight ( q  = l),  P = s, K (s) = 1 and a polynomial recursion 
relation 

The partition function is given by the iterative substitution (1) and at the nth iteration 
one may introduce the coefficients unL: 

m" m 
Z n ( s ) =  u n L S L = S n =  ulLS:-l. 

L = p "  L = p  
(3) 

The examples discussed here are realisable (see 9 3) as graphs in Euclidean space and 
will be formed by an iterative weighted decoration of edges or faces, etc, by some 
basic set of decorations (see below). The index L in (2) and (3) will stand for the 
number of edges or faces, etc, on a given configuration. Figures 1 and 2 respectively 
show basic sets of edge and face decorations used to construct ensembles in d = 2  
space and d = 3 space. The hierarchical ensemble is specified by choosing the 
coefficients, u l L ,  in (2); the description will be made in terms of edge decorations. A 
more general notation is necessary now: let biL be the chosen coefficient of the ith 
decoration of L edges in the basic set, so u l L  = Xi  biL. The iteration of (2) is used to 

Figure 1. A basic set of decorations in the plane. These decorations are so chosen that 
they preserve the Eulerian nature of the generated graphs and hence could form the basis 
of an Ising ensemble in the sense of 18 5 and 8. 
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Figure 2. A basic set of decorations in 3-space. The middle face labelled A is included in 
the weighting only in the first and last decorations. These decorations could also form the 
basis of an Ising ensemble. 

generate ensemble configurations at weight s as follows: if nth level configurations 
are required the recursion ( 2 )  is iterated n times: so = s, s1 = R ( s ) ,  s2 = R ( R ( s ) ) ,  . . . , s,. 
Then starting from a single edge an iterative decoration is carried out with, at the kth 
iteration, each edge in turn being decorated with the ith decoration of L edges, where 
i and L are chosen afresh for each edge with probability 

b i L S k - k / Z n - k + l ( S ) .  (4) 

The construction is simply the reverse of the renormalisation. With biL > 0 ViL and 
dR(x)/dx(x = 0) = 0, as henceforth assumed, the relations ( 2 )  have a single unstable 
fixed point: s = s* = s1 = . . . = s,. At s* the construction described above is self-similar 
((4) is independent of n )  and typically will generate self-similar fractal configurations. 
Away from fixed points the non-self-similar configurations constructed by following 
some renormalisation trajectory, as described above, will be termed flow fractals. 

3. Coefficients and realisation 

The coefficients b,L above are free to be chosen at will. For the one weight examples 
a simple equivalence exists between choices of bil. Given some particular set of b,, 
specifying R( s) and 2, (s) there exist equivalent ensembles defined on I?( 8) = gR ( 8 / g ) ,  
where g > 0, which obey j,(s’) = gZ,(s’/g). Statistics for the eguivalent ensembles (see 
below) are related by (B(L)),(s’)=(B(L)),(s’/g); R ( s )  and R(s’) have fixed points at 
s* and gs* respectively. If g = l /s* then s* = 1 and in, = Z,, ( b, l s*L/s*)  = 1, then 
such coefficients are in this sense the normalised members of the equivalence class. 

A particular class of coefficients of physical interest is now discussed. In general 
under the construction described above at each iteration all configurations with the 
same number, say L, of edges or faces, etc, are not equiprobable. However, physically 
interesting partition functions such as those of the Ising model and the generating 
functions for lattice animals and SAW (Stanley et a1 1982) do have this property: all 
microstates with the same value for the state variables, in the examples L, are equiprob- 
able. A choice of coefficients with this property is simply b, = 1 Vi ,  L. For the examples 
of figures 1 and 2 equiprobable microstate (EPM) relations are respectively 

( 5 )  s k  = s;-1+2s;-, + S9k-l 

and 

( 6 )  
9 13 19 

S k = S k - l + 2 s k - l + S k - l .  
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If one were to want to use such constructs as described here as simplified or pseudo- 
physical models, then for equilibrium problems choosing the EPM coefficients would 
seem desirable. However, under non-equilibrium or growth conditions equivalent 
microstates may not be equiprobable. Martin and Keefer (1985) also discuss the choice 
of coefficients on what are, in the terminology of the present work, one weight random 
fractal constructions. 

The ensembles of interest here must satisfy both constraints of geometric realisation 
and hierarchical partition function. These constraints are now discussed couched in 
the terms of edge decorations in the plane. 

The hierarchical constraint is that the decoration of a given configuration can be 
carried out independently on each basic shape (edges in figure l ) ,  and that the 
renormalisation of the partition function factors on each basic shape. The geometric 
constraint is a question of what one chooses to allow with respect to the intersections 
and weighting of independent decorations. The set of decorations in figure 1 are 
chosen such that any protrusion is not allowed within a distance of the end vertices 
of the decoration equal to its own height. Hence under the decoration of different 
edges multiple edges are not generated. However the intersection of vertices under 
different decorations is allowed but in the weighting of the ensemble vertex sets are 
ignored. To this degree both geometric realisation and hierarchical construction are 
both satisfied. The geometric and hierarchical constraints are intimately bound together 
although formally independent of each other. Other hierarchical ensembles in the 
plane can be made by considering face decorations allowing the intersection of edges 
but just weighting on the number of faces. The beta model of turbulence (Benzi er a1 
1984 and references therein) is an example of this. 

4. Expectations and critical behaviour 

In the two examples configurations are specified by a single state variable L. Expecta- 
tions of functions B ( L )  over all nth level configurations are given by 

In particular the expectation of the number of edges, faces, etc, ( L ) , ( s )  is, using the 
iteration ( l) ,  given by 

0 

(L),(s) = (s dZ"(S)/dS)/Z,(S) = ( s  c A J i ) )  (Zfl(s))-' (8) 
i = n - 1  

where A , ( k )  = dR(x)/dxl,=,,. With one weight, s,(s) = z , ( s ) .  At a fixed point, s*, 
( L ) ,  obeys the power law 

(L),(s*) = ds,/dsl,,,* = X,,(s*) = A: ( 9 )  

where A T  =dr(x)/dxlx=,*. The fixed point ensemble is associated with a fractal 
dimension D* reflecting its statistical self-similarity: 

D* = log( A :)/log( b )  (10) 

where it has been assumed that the embedding of the construction in Euclidean space 
endows it with a Euclidean metric such that an nth level configuration is of linear 
scale b" for the two examples b = 3. 
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Numerically solving ( 5 )  and (6) gives s* = 0.6941, D* = 1.3174 and s* = 0.8892, 
D* = 2.2740 respectively. 

At the sinks of the flow s = 0 and s + 00, the rule (4) with (2) generates configurations 
of dimension Do = log(p)/log( b) and &log( m)/log( b )  respectively. For the example 
of figure 1 the s = 0 and s + CO configurations are the I D  and a phi lattice (Given and 
Mandelbrot 1983). 

On flow fractals the author introduces the definition of a flowing dimension 

m n ,  s) = log((~),(s))/ log(b") (11)  

which being by definition a property of finite sets is strictly a function rather than a 
dimension. Figure 3 shows, for the example of figure 1, D(n,  s)  for several s close to 
s* .  As n + CO for s < s* and s > s*, D( n, s) approaches Do and D, respectively. From 
(8) and (11) one finds 

D(n,  s )  = log[si-,h,(i- l) /si] /n log(b). 
i = O  

Using (2) reveals that D(n,  s )  approaches Do and D, as 

D(n,  ~ ) = D o + C ( n , s ) / n  log(b) 

D( n, s) = D, - C'( n, s)/ n log( b) 

for s < s* 

for s > s* 
(13) 

where C ( n ,  s )  and C'(n,  s) are convergent series as n +CO, in practice converging 
rapidly with n. The l / n  approach to Do and D, is seen in figure 3. With s close to 
s*, D(n, s) remains close to D* before crossing over to (13) as C and C' converge. 
By analogy with other critical phenomena one may impose the concept of a correlation 
length %' = [(s - s * ) / s * ] ( - " ~ * )  and consider the recursion relation linearised at the 

I I 

1 6 0  1 

0 10 20 30 
n 

Figure 3. Flowing dimension against n for the example of figure 1 with s - s* = 
~ 1 0 - ~  and ~ 1 0 - ~ .  
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fixed point for the mth iterate, s t =  s* + A Y ( s  - s*). In the case s < s*, informally 
allowing m to be non-integer, one finds m such that s' = 0 leading to 8 as given above 
with 8 = b". Values for 8 are given in figure 3 and roughly correspond with the 
divergence of D(n, s) from D*. 

An explicit expression for the second moment, (L'), of the self-similar ensembles 
at s* is now found. Now, for general s, 

(L2)"(S)  = (L)"(S) + (s2 d2sfl(s)/ds2)/sfl(s)  (14) 

where it is noted that Z,,(s)  = s,(s). Let X p k ( s )  = dPsk(y)/dyPI,=, and A,(s) = 
dPR(y)/dypl,,,, with Ap(s*) shortened to A; below. The fundamental recursion s,(s) = 
R(s,-](s)) gives 

X 2 , ( S * )  = A~(Xl,- , (s*))2+ hTX,,-,(s*). (15) 

(L , ) , , (S )*=  A T ~ + s * A T ~ " A T ( I  - A T - " ) / ( A T ~ - A T ) .  (16) 

( L q ) , ( s * )  = kqfl(  b")'q. (17) 

Summing (15), substituting in the first moment (9) and substituting in (14) gives 

Following Benzi et ul (1984) a moment exponent 4q is introduced via 

From (16) 4' = 2 log(AT)/log( b )  = 2D* and K,, + constant as n + 03. With increasing 
algebraic labour, recursion relations for higher derivatives may be found and summed 
using previous derivatives, and successive moments may be found using previous 
moments. The homogeneity, 4p = pD*, found above for C#J~ is suggested for all moments 
of the self-similar ensembles by the familiar linearised argument of the renormalisation 
group. As discussed in Melrose (1986) other random fractal constructions may not be 
homogeneous; in particular, if at each iteration all basic shapes are decorated with 
the same randomly chosen decoration then inhomogeneous fractals are constructed. 

Fluctuations and moments away from fixed points are now discussed. Fluctuations 
in L, f f l ( s )  = (L'), - ( L ) i  (the analogue of a specific heat), are found by iterating (14). 
In general one finds 

where ai = siAl(si)/sitl and bi = S ~ A ~ ( S ~ ) / S ~ + ~ .  For s > s* and s < s* one finds, using ( 2 )  
and (18), that f n ( s )  = m"k, ( s )  and f n ( s )  = p " k ' , ( s )  respectively, where k and k' are 
convergent series as n + CO and identically kL(0) = k,(co) = 0. With p < b D  the density 
of fluctuations, limn+mffl(s)/b"d is zero for s <  s* and non-zero for s >  s* only if 
m = bd, its geometrical maximum. The usual scaling argument determines that the 
density of fluctuations, when non-zero, displays a singularity 

where g(x)  = g(l  +x) ;  the periodic amplitude fluctuations are well known to be a 
possibility in models involving a discrete set of scale changes as b" here (Derrida et 
ul 1983 and references therein). In the direct geometric constructions here these 
amplitude fluctuations are much larger than those reported for physical models on 
hierarchical lattices by Demda et ul (1983). Figure 4 shows f f l ( s ) / b f l d  against ln(s- 
s*)/ln(A?) for the n = 10 finite hierarchy of figure 1. In the regime when 8 ( s  -s*) < b" 
the curve assumes the form (19) and when (s - s*) is such that 8( s - s*) > b" the finite 
size is felt and the curve drops away to the fixed point value given by (16). 
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01 1 
-1 6 -12 - 8  - L  0 

In(s-s,)/in(h;) 

Figure4. Fluctuations in L for the example of figure 1 with values of s close to s* and n = 10. 

5. The Ising snowflake 

A multiple weight ensemble is now introduced. A set of basic shapes are now decorated 
with configurations made up of the same set. The Ising snowflake is based on the 
iterative decoration of boundaries separating ‘black’ and ‘white’ regions in the plane. 
Starting from a black triangle in a white background, at each step all black triangles 
are subdivided into nine and triangles with boundaries are decorated. Figure 5 shows 
the allowed decorations on a triangle with one boundary (cf the edge decorations of 
figure 1). Triangles with multiple boundaries may be decorated by all configurations 
formed as a direct product of the figure 5 decorations on the separate boundaries. The 
chosen decorations preserve the configurations as Eulerian graphs and hence the 
definition of black and white regions (a natural extension would be to relax this 
condition and to set up ‘Potts’ snowflakes). Weights r,, r l ,  r 2 ,  r3 are introduced 
conjugate to the basic shapes in the configurations: black triangles with zero to three 
black/white boundaries, all white triangles are given weight unity. An nth level 
configuration is given a weight 
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if it contains respectively I to L triangles with zero to three boundaries. The partition 
function, Z,( P), obeys the hierarchical condition ( 1 )  and the recursion relations can 
be found by subdividing and decorating black triangles with zero to three boundaries. 
Straightforward enumeration (see figure 5 for r i )  yields for the EPM choice of 
coefficients: 

rb = R,( P) = r’, 

ri = R, (P)  = r ~ r : [ r ~ ( r l + r 0 r 2 ) + r : ( l i r 3 ) ]  

r ;  = R2( P) = ror:r2[ ri( r1  + rOr2)’ + 2r0r:( rl + ror2)( 1 + r3 )  + r2r;( 1 + r 3 ) 2 ]  (21) 
r ;  = R3( P) = r:[ ri( r ,  + ror2)3 + 2r0r;( rl  + Tor2)’( 1 + r 3 )  

+ 3 r : r , ( r , + ~ ~ r ~ ) ( l + r ~ ) ~ +  r : ( 1 + r 3 ) 3 ] .  

The notation r,k will be used to denote the ith field in the set f k  given by the kth iterate 
of (21) from some initial set of fields Po (where unambiguous, rio will be shortened to 
ri below). As described in § 1 configurations within the nth level ensemble can be 
generared by following the reverse of the flow of (21); at the mth decoration a pth 
type of black triangle is decorated according to the weight 

Ton - m  r l  n - m  rzn  - m  r3n- m /  rpn - m + i  . ( 2 2 )  I J K L  

The decoration is assumed to start from a black triangle with three boundaries conjugate 
to r3; hence ~ n ( ~ o o r 1 0 r 2 0 ~ 3 ~ )  = r 3 n ( r 0 0 r 1 0 r 2 0 r 3 0 ) *  

Note that the above construction is in general not based on independent boundary 
decorations (e.g. figure l ) ,  but rather independent triangle decorations; the weight r2 
in (21) couples decorations of different boundaries of the same triangle. Figure 6 
shows some of the decorations of a two bounded triangle. The first of these, for 
example, gives a term ror;r: to the relation R2(F). The recursion relations have the 
invariant subspaces ( ro = l ) ,  ( r o  = 1,  r2 = r3 = 0 )  and ( r o  = 1, rl = s, r2 = s , r3 = s3). In 
the last of these subspaces, the boundary subspace, configurations are weighted just 
on the number of black/white boundaries and decorations do factor on separate 
boundaries of the same triangle. The ensembles in this subspace can be constructed 
via independent boundary decorations. This simplicity will allow an understanding 
of the geometry of this subspace to be given in § 7. Flows within the boundary subspace 
are given by the recursion relation 

2 

s t  = s3 + 2s4 + s7 (23) 
cf equations ( 5 )  and (6). An unstable fixed point of (23) is found at s*  = 0.639 404. 

Figure 6. The decorations of a two bounded triangle which include internal intersections 
at site A on a line, indicated in the first decoration, through one apex of the triangle. 
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The full space contains, in various weighting limits, a number of deterministic 
fractals and regular random fractals (Martin and Keefer 1985). A second unstable 
fixed point is found on the r ,  axis in the ( ro = 1, r2 = r3 = 0) subspace. Restricting the 
decorations to be those formed from just the first three configurations of figure 5 
constitutes a subensemble as none of these decorations introduce triangles with three 
boundaries. The recursion relations (21) separate into terms with and without powers 
of r3 and the relations for the subensemble are those terms without r 3 .  

6. Expectations and the transfer matrix 

Expectations formulated as derivatives of the partition function can be found by 
familiar RG matrix algebra. Let some quantity of interest, Ox, be associated with a 
conjugate field x via rio=f;(x, e) ,  with 0 some other set of fields in the problem. Then 
if 

(Ox), = [x dz,(J(x)) /dxl /z , (J(x))  (24) 

and using the chain rule and the hierarchical property ( l ) ,  one finds after some 
rearrangement 

where the ith element of the vector V,, obeys ( Vn)l = aIk, with k the index of the basic 
shape used to initiate decoration, ( Vo)l  = x dr,,/dx and T, is a set of q * q matrices: 

(26) 

( T,,,),, is the expected number of j th type basic shapes introduced on an ith type basic 
shape at the ( n - m + l ) t h  decoration. T, is the natural generalisation both to an 
ensemble and flow fractals of the transfer matrix of fractals introduced recently by 
Mandelbrot et al (1985). Note the RG gives the transpose of the matrix defined by 
Mandelbrot et a1 and attention is focused on the right eigenvectors as the quantities 
whose expectation is to be found. For the snowflake a choice of fields 

( T m  ) = ( q m - 1  ( d ~ i  ( ~) /d r ,  I F  = Jm- 1 ) / r r m .  

roo = r r ,o=  rs r2, = rs2 r30 = rs3 (27) 
has r conjugate to the black area and s conjugate to the boundary length. One finds 
that the expectation of the area is given by (25) with Vo = (1, 1, 1 , l )  and of the boundary 
by Vo= (0,1,2,3).  

7. Eigenvalues of the snowflake TMF 

Following Mandelbrot et a1 (1985) it is possible to interpret eigenvalues of the TMF 

as being associated with dimensions and expectations of subsets of the full configur- 
ations. The TMF of the snowflake are given by substituting (21) in (26) and are a set 
of matrices parametrised by ( ro-r3) .  Throughout the discussion below, the boundary 
subspace, (27) with r = 1, will be denoted by { B } .  As will be seen the factorisation 
(see § 5) in this subspace allows explicit interpretation of all the eigenvalues of the 
subspace TMF. 
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From (21) one sees that A, = 9  is an eigenvalue of all the TMF. This eigenvalue is 
taken to give the dimension of the black area, 0, = log(9)/log(3) = 2 V(r0-r3). The 
area vector (1, 1, 1, l ) ,  however, is only the corresponding eigenvector for the TMF in 
{ B } ;  it is proved that Z, T,, = 9 V { B }  using the fact that the set of decorations on each 
shape are such that for each of weight s L  with area 9 + A there is another also of weight 
s L  but with area 9-A. This eigenvector (1,1,1,1) is lost in { B }  by breaking this 
symmetry. That in general (1, 1, 1, 1) is not an eigenvector simply implies that away 
from { B }  the black area is not self-similar, although as n increases it rapidly approaches 
9". The second largest eigenvalue, A b ,  is found numerically to be greater than 3 and 
is taken to be associated with the length of the black/white boundary. The variation 
of A b  in { B }  is as described for the ensembles of figures 1 and 2 in 0 4. The boundary 
vector (0, 1,2,3) is the corresponding eigenvector only for the TMF in { B } ;  this can be 
proved using the factorisation in { B }  of decorations into independent boundary 
decorations. In general expectations of vectors of the form (x, y ,  z, w )  are dominated 
by the eigenvalue A, whilst those of the form (0, x, y ,  z )  are dominated by the eigenvalues 

The other two eigenvalues of the TMF are less easily understood. However, in { B }  
interpretations of these can be found. In { B }  expectations of quantities, ( Q ) p ,  which 
are a sum over the p separate boundary decorations on a p bounded shape, Q p =  
q1 +. . . + qp,  obey 

Ab ( r0- r 3 ) .  

( Q ) p = P ( Q h .  (28) 

Examples of such are the expectation, T p 3 ( { B } ) ,  of the number of three bounded 
triangles over the decorations of a pth bounded shape and Tl({B}) -2T2({B}), the 
expectation of the number of boundaries other than those on three bounded triangles 
over the decorations of a pth bounded shape. Using (28) one finds the ratios of these 
expectations are constant over p :  

T13/( TI1 +2T12) = T23/( T21+ 2T22) = T33/( T31+2T32) = k ( s )  (29) 

where k ( s )  = s7/(3s3+8s4+4s7).  From (29), the fourth column of the TMF in { B }  is 
not linearly independent and the TMF are singular with corresponding eigenvector 
(0, x, 2x, - y )  with x / y  = k(s). 

Using the identity Tr T = Xz A ,  one finds the fourth eigenvalue, A I  ( I  for intersection), 
in { B }  is given by 

9+  TI1 + T22+ T33 = 9 + (TI,  + 2 TI,+ 3 Tl3) + 0 +  A I  (30) 

A [ =  T ~ ~ ( { B } ) - ~ T ~ ~ ( { B ) ) =  i+ ( s8+2s11+sL4) / s ' 2 .  (31) 

and using T33 = 3 T, ,  gives 

One finds that A I  is 1 + X I ,  where X I  is a sum over the weights of the decorations of a 
two bounded triangle which have internal intersections. These are shown in figure 6. 
Interpretation is easy: log(AI)/log(b) is the fractal dimension of the set of vertices 
lying at the intersection of independent boundary decorations and on a line bisecting 
the apex of the original basic shape (see figure 6). At the mth decoration iteration the 
number of such intersections introduced per such intersection is just AI(sfl-,,,); the 1 
in A I  counts the original intersection. 

In summary a zero eigenvalue is found in { B }  due to the presence of two independent 
quantities whose expectations are sums over independent boundary decorations (the 
'direct product' nature of the decorations introducing three bounded triangles is evident 
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in figure 5 ) .  An intersection eigenvalue gives the fractal dimension of a special cut set 
of the configurations. 

8. Subsets of known models 

The low temperature graphs for an Ising model on a hexagonal lattice (Domb and 
Green 1973) are all the Eulerian graphs on its dual lattice, the triangular lattice. The 
configurations of the snowflake ensemble are a subset of these graphs, each black(white) 
triangle corresponding to an up(down) spin and each black/white boundary cutting 
an unsatisfied bond on the hexagonal lattice. After removal of a constant one makes 
the following identification between the subspace (27) and the usual Ising weighting: 

s = exp( - 2 4  r = exp( -2h) 

where J and h are the reduced Ising coupling and external field respectively. Although 
the snowflake ensemble is such a subset possessing a phase transition it bears little 
resemblance to the full Ising model. With polynomial recursion relations only a stable 
(high temperature) fixed point at J = 0 cannot be found. The phase transition in the 
snowflake involves just the boundary set. Fixed points of the snowflake have more 
than the two relevant eigenvalues expected for the Ising model. The snowflake is a 
crude droplet model (Fisher 1967) and can be improved somewhat in this respect by 
allowing more excluded volume effects: for example, by adding internal white triangles 
where possible on the original set of decorations. The boundary subspace would be 
lost but the possibility of phase transitions involving both boundary and area would 
be opened up. However, to find other than polynomial recursion relations would 
require the constructions to be part of a wider scheme of real space renormalisation 
approximations. Recursion relations for Ising models on hierarchical lattices are 
rational algebraic expressions (Melrose 1983). 

Geometric models such as SAW and lattice animals do have polynomial recursion 
relations (Stanley et a1 1982) and it is easy to find hierarchical subsets of these ensembles. 
(An example is given in Melrose (1985).) The relationship of such ensembles to the 
full ensembles is an interesting question. 

9. Deterministic and regular random fractals 

Deterministic fractals (one decoration per basic shape) and regular random fractals 
(multiple decorations per basic shape but each having the same numbers of each 
subshape (Martin and Keefer 1985)) can both be associated trivially with one-term 
polynomial recursion relations of the form, for a p sided shape, 

r: = m,rp . . . r: (33) 

with m, = 1 (integer) for deterministic (regular random) fractals. Expectations from 
(33) are constant throughout the weight space and the RG flow is meaningless; i, is 
the ijth element of the transpose of the TMF of Mandelbrot et a1 (1985). Unlike the 
examples in the present work the random TMF of Mandelbrot er a1 (1985) are a weighted 
sum of deterministic TMF. 
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10. Discussion and conclusions 

The purpose of this work has been to introduce the formalism required to realise 
hierarchical ensembles in Euclidean space. By combining the familiar iterative con- 
structions of Mandelbrot with renormalisation algebra, the generating functions for 
ensembles containing random fractals at phase transitions were open to analysis. 
Introducing the RG and the full ensemble brought about the existence of flow fractal 
constructions. The field of critical phenomena is rife with crossover effects which beg 
the existence of flow fractals. Other physical phenomena may show a slow approach 
to an asymptotic dimension: molecular paths in simulations have been argued recently 
to show such behaviour (Powles and Quirke 1984, Powles 1985, Kalia et a1 1985). The 
simple critical behaviour of such ensembles and associated anomalies, such as periodic 
critical amplitudes, was discussed. A multiple weight ensemble, the Ising snowflake, 
was described and the transfer matrix of fractals, introduced recently by Mandelbrot 
et a1 (1985), arose naturally in the multiple weight scheme. Explicit geometric interpre- 
tation of the eigenvalues of the snowflake TMF was given. Mandelbrot et a1 (1985) 
found that the TMF of all finitely ramified deterministic constructions were singular 
here; a singular TMF was associated with a subtle direct product nature of the random 
construction in a particular weight subspace. One eigenvalue was shown to be associ- 
ated with a special cut set of the construction; this is interesting in the context of 
interpreting eigenvalues of TMF in less explicit problems such as the percolation cluster 
studies of Aharony et al (1985). 

The hierarchical ensembles introduced above do, by definition, constitute solvable 
ensembles with phase transitions in any Euclidean space. It was noted that hierarchical 
subsets of known models may easily be found and this may be of use in statistical 
mechanics. However, the ensembles are constrained on all scales and show non- 
universal behaviour; one finds for example that a Monte Carlo algorithm to sample 
the configuration space would need to be able to flip and alter configurations on all 
scales. 

As random fractal constructions, use may be made of these ensembles as models 
of rough surfaces. However, one might then want to place physical models on the 
configurations but with the examples in this work the intersection of vertices under 
independent decorations makes this problematical: one may either treat the configur- 
ations as connected or disconnected at such vertices and only in the latter case can 
the renormalisation solve models placed on the configurations. However Monte Carlo 
investigations of diffusion onto, off and around generated configurations are feasible. 
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